R Online Editor
Free online R editor with real-time execution, statistical computing, and data analysis via WebR (R 4.4+). Perfect for learning R, data science, and statistical analysis.
Loading editor...
Features
R Execution
Execute R code directly in your browser with statistical computing support
Data Analysis
Built-in support for statistical analysis, data manipulation, and modeling
Statistical Computing
WebR environment optimized for statistical computing and data manipulation
Console Output
Real-time console output with comprehensive R environment
Statistical Functions
Comprehensive library of statistical functions and methods
Code Sharing
Share R analysis and visualizations with others
Frequently Asked Questions
How to get started with R programming?
Let's start with R basics for data analysis:
# Basic output
print("Hello, R!")
# Variables and data types
name <- "R Programming"
number <- 42
is_true <- TRUE
# Vectors
numbers <- c(1, 2, 3, 4, 5)
names <- c("Alice", "Bob", "Charlie")
# Basic calculations
mean(numbers)
sum(numbers)
length(numbers)
Our editor provides real-time execution and statistical computing.
How to work with data frames in R?
Learn R's fundamental data structure for data analysis:
# Create a data frame
df <- data.frame(
name = c("Alice", "Bob", "Charlie", "Diana"),
age = c(25, 30, 35, 28),
score = c(85, 92, 78, 96)
)
# View the data
print(df)
str(df) # Structure
summary(df) # Summary statistics
# Access columns
df$name
df["age"]
# Filter data
df[df$age > 30, ]
subset(df, score > 85)
# Add new columns
df$grade <- ifelse(df$score >= 90, "A", "B")
Practice data manipulation in our interactive environment.
What R version and limitations apply?
Our R editor runs R 4.4+ via WebR with specific constraints:
Version & Environment:
- R 4.4+ in WebAssembly (WebR)
- ~200 pre-installed packages
- Memory limit: ~2GB for datasets
Key Limitations:
- No graphics/plotting device (text output only)
- No file I/O (except URL imports)
- No parallel computing
- No external package installation
- No system calls
Available Packages:
# Check available packages
installed.packages()[, 'Package']
# Common packages available:
# base, stats, utils, methods, datasets
# dplyr (selected packages)
Focus on statistical computing and data manipulation.
How to perform statistical analysis in R?
Conduct statistical tests and analysis:
# Generate sample data
set.seed(123) # For reproducibility
group1 <- rnorm(30, mean = 100, sd = 15)
group2 <- rnorm(30, mean = 110, sd = 15)
# Descriptive statistics
summary(group1)
sd(group1) # Standard deviation
var(group1) # Variance
# T-test
t.test(group1, group2)
# Correlation
x <- 1:20
y <- x * 2 + rnorm(20, 0, 3)
cor(x, y)
cor.test(x, y)
# Linear regression
model <- lm(y ~ x)
summary(model)
plot(x, y)
abline(model, col = "red")
Practice statistical analysis with comprehensive R functions.
How to work with functions in R?
Create custom functions for data analysis:
# Basic function
calculate_stats <- function(data) {
list(
mean = mean(data),
median = median(data),
sd = sd(data),
min = min(data),
max = max(data)
)
}
# Function with default parameters
normalize_data <- function(data, method = "z-score") {
if (method == "z-score") {
return((data - mean(data)) / sd(data))
} else if (method == "min-max") {
return((data - min(data)) / (max(data) - min(data)))
}
}
# Use the functions
sample_data <- rnorm(100, 50, 10)
stats <- calculate_stats(sample_data)
print(stats)
normalized <- normalize_data(sample_data)
plot(density(normalized))
Build reusable functions for your data analysis workflow.
How to handle data import and processing in R?
Load and process data efficiently:
# Create sample dataset
data <- data.frame(
id = 1:100,
group = sample(c("A", "B", "C"), 100, replace = TRUE),
value = rnorm(100, 50, 15),
date = Sys.Date() + 1:100
)
# Data exploration
head(data) # First 6 rows
tail(data) # Last 6 rows
dim(data) # Dimensions
colnames(data) # Column names
# Data aggregation
aggregate(value ~ group, data, mean)
aggregate(value ~ group, data, function(x) c(mean=mean(x), sd=sd(x)))
# Data filtering and sorting
high_values <- data[data$value > 60, ]
sorted_data <- data[order(data$value, decreasing = TRUE), ]
# Handle missing values
# data$value[sample(100, 10)] <- NA # Introduce NAs
# complete_cases <- data[complete.cases(data), ]
Master data processing techniques in our R environment.
Where can I learn more about R?
Explore these official resources and learning materials:
Official Documentation:
- R Project - Official R language homepage
- R Manuals - Comprehensive R documentation
- R Language Definition - Language specification
- CRAN - Package repository and documentation
Learning Resources:
- R for Data Science - Comprehensive free book by Hadley Wickham
- Swirl - Interactive R learning in the console
- R Style Guide - Tidyverse coding conventions
- Quick-R - Practical R tutorials
Data Science & Statistics:
- Tidyverse - Modern R packages for data science
- ggplot2 Documentation - Data visualization
- R Markdown - Dynamic documents
- Shiny - Interactive web applications
These resources cover R from statistical computing basics to advanced data science!
Related R Online Editor Articles
3 articlesDiscover more insights about r online editor and related development topics
How AI Enhances Diagram Scripting
Explore how AI is transforming diagram scripting by automating tasks, reducing errors, and enhancing team collaboration in modern workflows.
Top 9 Browser-Based Utilities for Daily Tasks: 2025 Complete Guide
Discover the best browser-based utilities for 2025, featuring privacy-first tools that process data locally while offering US-specific formatting and seamless collaboration features.
Learn Lua Scripting: A Beginner's Guide
Master Lua scripting with our comprehensive guide featuring a powerful online Lua compiler. Ideal for aspiring Lua game developers, Lua Roblox plugin creators, and anyone learning Lua fundamentals without the need for installation.