R Online Editor
Free online R editor with real-time execution, statistical computing, and data analysis via WebR (R 4.4+). Perfect for learning R, data science, and statistical analysis.
Loading editor...
Features
R Execution
Execute R code directly in your browser with statistical computing support
Data Analysis
Built-in support for statistical analysis, data manipulation, and modeling
Statistical Computing
WebR environment optimized for statistical computing and data manipulation
Console Output
Real-time console output with comprehensive R environment
Statistical Functions
Comprehensive library of statistical functions and methods
Code Sharing
Share R analysis and visualizations with others
Frequently Asked Questions
How to get started with R programming?
Let's start with R basics for data analysis:
# Basic output
print("Hello, R!")
# Variables and data types
name <- "R Programming"
number <- 42
is_true <- TRUE
# Vectors
numbers <- c(1, 2, 3, 4, 5)
names <- c("Alice", "Bob", "Charlie")
# Basic calculations
mean(numbers)
sum(numbers)
length(numbers)
Our editor provides real-time execution and statistical computing.
How to work with data frames in R?
Learn R's fundamental data structure for data analysis:
# Create a data frame
df <- data.frame(
name = c("Alice", "Bob", "Charlie", "Diana"),
age = c(25, 30, 35, 28),
score = c(85, 92, 78, 96)
)
# View the data
print(df)
str(df) # Structure
summary(df) # Summary statistics
# Access columns
df$name
df["age"]
# Filter data
df[df$age > 30, ]
subset(df, score > 85)
# Add new columns
df$grade <- ifelse(df$score >= 90, "A", "B")
Practice data manipulation in our interactive environment.
What R version and limitations apply?
Our R editor runs R 4.4+ via WebR with specific constraints:
Version & Environment:
- R 4.4+ in WebAssembly (WebR)
- ~200 pre-installed packages
- Memory limit: ~2GB for datasets
Key Limitations:
- No graphics/plotting device (text output only)
- No file I/O (except URL imports)
- No parallel computing
- No external package installation
- No system calls
Available Packages:
# Check available packages
installed.packages()[, 'Package']
# Common packages available:
# base, stats, utils, methods, datasets
# dplyr (selected packages)
Focus on statistical computing and data manipulation.
How to perform statistical analysis in R?
Conduct statistical tests and analysis:
# Generate sample data
set.seed(123) # For reproducibility
group1 <- rnorm(30, mean = 100, sd = 15)
group2 <- rnorm(30, mean = 110, sd = 15)
# Descriptive statistics
summary(group1)
sd(group1) # Standard deviation
var(group1) # Variance
# T-test
t.test(group1, group2)
# Correlation
x <- 1:20
y <- x * 2 + rnorm(20, 0, 3)
cor(x, y)
cor.test(x, y)
# Linear regression
model <- lm(y ~ x)
summary(model)
plot(x, y)
abline(model, col = "red")
Practice statistical analysis with comprehensive R functions.
How to work with functions in R?
Create custom functions for data analysis:
# Basic function
calculate_stats <- function(data) {
list(
mean = mean(data),
median = median(data),
sd = sd(data),
min = min(data),
max = max(data)
)
}
# Function with default parameters
normalize_data <- function(data, method = "z-score") {
if (method == "z-score") {
return((data - mean(data)) / sd(data))
} else if (method == "min-max") {
return((data - min(data)) / (max(data) - min(data)))
}
}
# Use the functions
sample_data <- rnorm(100, 50, 10)
stats <- calculate_stats(sample_data)
print(stats)
normalized <- normalize_data(sample_data)
plot(density(normalized))
Build reusable functions for your data analysis workflow.
How to handle data import and processing in R?
Load and process data efficiently:
# Create sample dataset
data <- data.frame(
id = 1:100,
group = sample(c("A", "B", "C"), 100, replace = TRUE),
value = rnorm(100, 50, 15),
date = Sys.Date() + 1:100
)
# Data exploration
head(data) # First 6 rows
tail(data) # Last 6 rows
dim(data) # Dimensions
colnames(data) # Column names
# Data aggregation
aggregate(value ~ group, data, mean)
aggregate(value ~ group, data, function(x) c(mean=mean(x), sd=sd(x)))
# Data filtering and sorting
high_values <- data[data$value > 60, ]
sorted_data <- data[order(data$value, decreasing = TRUE), ]
# Handle missing values
# data$value[sample(100, 10)] <- NA # Introduce NAs
# complete_cases <- data[complete.cases(data), ]
Master data processing techniques in our R environment.
Where can I learn more about R?
Explore these official resources and learning materials:
Official Documentation:
- R Project - Official R language homepage
- R Manuals - Comprehensive R documentation
- R Language Definition - Language specification
- CRAN - Package repository and documentation
Learning Resources:
- R for Data Science - Comprehensive free book by Hadley Wickham
- Swirl - Interactive R learning in the console
- R Style Guide - Tidyverse coding conventions
- Quick-R - Practical R tutorials
Data Science & Statistics:
- Tidyverse - Modern R packages for data science
- ggplot2 Documentation - Data visualization
- R Markdown - Dynamic documents
- Shiny - Interactive web applications
These resources cover R from statistical computing basics to advanced data science!